

Dr Lee Jong-Wook Fellowship

Surveillance Analysis and Application 3

11 September 2025

Achangwa Chiara, M.Sc., Ph.D.

Department of Preventive Medicine,
The Catholic University of Korea, Seoul, Korea,

ciaraacha@gmail.com

Lecture Content

Definition and scope

Why surveillance matters!

Components of Surveillance

Analysis of surveillance data

Practice in R

Key takeaways

Requirements

R

R studio

Definition and Scope

✓ Public health surveillance

- Ongoing, systematic collection, analysis, interpretation, and dissemination of health data
- Used for action: prevention, control, and policy

✓ Analysis

• Transform raw data into signals and insights (time, place, person)

✓ Application

• Translate insights into actions: alerts, prevention and control measures, vaccination, and evaluation

Why surveillance?

Detect	Detect outbreaks early and guide rapid response
Monitor	Monitor disease trends, severity, and inequities
Measure	Measure program impact (vaccination, NPI, case management)
Allocate	Allocate resources efficiently and plan preparedness
Support	Support risk communication and public trust

Components of Surveillance

Analysis of Surveillance data

Core Descriptive Analysis

- Time: time-series analysis, interrupted time series analysis, epidemic curves,
- Place: maps, incidence choropleths, cluster detection
- Person: age/sex/ attack rates and CFR

Spatiotemporal Analysis

 Spatial, space—time analysis through Moran's I

Disease transmission analysis / modeling

- Incubation period and serial interval
- Basic reproduction number (R_0) and (R_t)
- SEIR (Susceptible Exposed – Infected – Recovered)

Time Series Analysis for Surveillance

A Time Series is a collection of observations y made sequentially in time t, that is a series of values collected over a period of time

■Every year	Year	2	010	201	1 2	2012	2013						
	Prevalence of HB	V	2.3	2.0	5	3.1	3.3						
■Every quarter	Quarter	Quart	er 1	Quar	ter 2	Qua	arter 3	Quai	rter 4				
	N° of Measles	3.6		5.	2	1	13.2	4	.3				
Every month	Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep			
	N° of IFV cases	120	123	133	125	130	132	132	132	133			
■Every week	Week	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10		
	N° of NTD cases	520	523	733	465	450	451	554	185	253	158		
■Everyday	Days	1	2	3	4	5	6	7	8	9	10	11	12
	N° of NTD cases	120	123	133	125	130	132	132	132	133	125	128	128

8

✓ A discrete time series is a collection of data with distinct values or categories, like counts of events, categorical statuses, etc, recorded at specific times.

Week	Influenza A Cases	Vaccination Coverage (%)	School Closure
1	15	12	0
2	22	15	0

✓ A continuous time series is a collection of data, a continuous range of values, like temperature, height etc, at regular time intervals.

Date	Anti S IgG Level	Vaccination Status	Age Group	Infection Status	
2025-05-01	95.3	Vaccinated	30–50	Infection	
2025-05-02	108.5	Not vaccinated	30–50	Infection	

Importance of time series in surveillance

- ✓ Understanding the past behavior of a dataset
- ✓ Can forecast future trends/activities, hence can be used to plan future interventions
- ✓ Evaluate current interventions
- ✓ Facilitates comparison of periods/intervention

Patterns in Time Series for Surveillance.

1. Trends:

the upward, downward, or no pattern observed

Why measure trends?

- Past behavior
- Estimation e.g, estimating infection peaks
- Other components e.g, comparative analysis among groups

Upward pattern

Downward pattern

No pattern

Achangwa et al., Frontiers in Public Health, 2023.

2. Periodicity: Repetition of behavior in a regular pattern

✓ Repeated cycles of variation usually over a period of less than one year

3. Seasonality: Periodic behavior with a known period (hourly, monthly, every 2 months...)

Concern	Seasonal Pattern	Explanation			
Influenza (Flu) cases	Peaks in winter months (Nov-Feh)	Cold, dry air facilitates virus survival and indoor crowding increases spread.			
Allergy-related hospital visits	Peaks in spring and fall	Due to increased pollen (spring) and mold (fall).			
Malaria cases	Peaks in the rainy season in tropical regions	Rain creates stagnant water, ideal for mosquito breeding.			
Vitamin D deficiency	Higher in winter	Reduced sunlight exposure in winter months.			

4. Heteroskedasticity: changing variance

✓ Changing the spread involving periods of low and high peaks across a period

5. Missing data, outliers, and breaks

- ✓ Extreme values that deviate significantly from the trend or seasonality.
- ✓ Sudden changes in the underlying process (e.g., policy shifts, lockdowns).

Time series models

1-Classical models

Model	Description				
AR (Autoregressive)	Predicts future values based on past values: $X_t = \phi_1 X_{t-1} + \epsilon_t$				
MA (Moving Average)	Model where the current value of the series is expressed as a linear combination of past white noise error terms				
	$X_{t} = \mu + \theta_{1} \epsilon_{t-1} + \theta_{2} \epsilon_{t-2} + \dots + \theta_{q} \epsilon_{t-q} + \epsilon_{t}$				
ARMA	Combines AR and MA: good for stationary series.				
ARMA	$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + \theta_{1}\epsilon_{t-1} + \theta_{2}\epsilon_{t-2} + \dots + \theta_{q}\epsilon_{t-q} + \epsilon_{t}$				
ARIMA	Includes differencing to handle non-stationarity.				
Auto-Regressive Integrated Moving Average	includes differencing to fiancie non-stationarity.				
SARIMA	ARIMA with seasonal components.				
Seasonal Decomposition (STL)	Breaks a series into seasonal, trend, and residual components.				

Time series models

2- Heteroskedasticity models

Model	Description
	Models time-varying variance based on past squared errors.
	Extends ARCH by modeling variance as a function of both past errors and past variances.

Interrupted Time Series (ITS) Analysis for Surveillance

- ✓ Analysis of time series data (i.e., an outcome measured over time)
- ✓ Comparison before and after an intervention or interruption

✓ Particularly useful for assessing the impact of policy or some other healthcare

initiative (pre- to post-comparison)

ITS Analysis

Examples:

- 1-Changes in the daily number of COVID-19 cases after the implementation of PHSM and vaccination
- 2- Changes in the number of live births after the implementation of the child encouragement policies
- 1. Was the implementation of PHSM and vaccination policies correlated with a decrease in the number of COVID-19 cases?
- 2. <u>Was the implementation of child encouragement policies correlated with an increase</u> in the number of live births?

ITS Analysis

Intervention/policies

Factual

What happened in reality

Counterfactual

What we expect would have happened if the intervention/policies were not implemented.

ITS Analysis

The change could take two forms, including;

- ✓ A level/step change immediately after the intervention
- ✓ A slope/trend change after the intervention
- **✓** Both

Are there significant changes in level and/or slope following the intervention?

Types of ITS analysis used for surveillance

Uncontrolled ITS, one intervention

e.g Evaluate the effect of the nationwide COVID-19 lockdown (implemented in March 2020) on the incidence of influenza.

Uncontrolled ITS, two interventions

e.g To evaluate how two national interventions (1993-family planning policy, 2004 – childbirth promoting activities) affected the number of births in Korea between 1975 and 2022.

Controlled ITS, one intervention

e.g Evaluating the Impact of a Smoking Ban on Hospital Admissions for Asthma

ITS model equations

Factual

gls(quantity.x ~ Time + Intervention + Post.intervention.time, data = data, method="ML")

Counterfactual

gls(quantity.x ~ Time, data = data, method="ML")

Practice and Application

Data

Download the mock data sets from the link below:

http://onehealth.or.kr/surveillance.html

Datasets to be used

1 - Daily number of SARS-CoV-2 cases 2020 – 2022

2 - Monthly reported cases of Chlamydia 2017 – 2022

3 - Weekly number of influenza cases

4 - Yearly fertility rate in Korea 1975 – 2022

- mockdata1

- mockdata2

- mockdata3

- mockdata4

South Korea reports 26 new coronavirus cases

Published: May 13, 2020 - 13:07:28

Plotting Time Series Plots in R

Scenario 1: Time series analysis using daily data

You are a worker at the Ministry of Health in your country. You have been asked to brief the Lee Jong-wook Public Health Fellowship 2025 cohort on the COVID-19 trends between 2020 and 2022. Using the daily COVID-19 case data (2020-2022) provided by the COVID-19 Surveillance System from KCDA;

- 1) Plot an overall time series of the daily number of reported cases
- 2) Briefly describe and interpret your results

Note: Use mockdata1 and R for your analysis.

- ✓ Open R Studio (Installed from: https://posit.co/download/rstudio-desktop/)
- ✓ Open a new R script file in R Studio
- ✓ Load the following R libraries;

```
# install.packages("package") if not yet installed
library(readr)
```

library(dplyr)

library(psych)

library(forecast)

```
# open a new R script file in R studio
# load the following R packages
library(readr)
library(psych)
library(dplyr)
library(forecast)
# get and set your working directory
getwd()
setwd("C:/Users/ACHANGWA CHIARA/Desktop")
# import your data
df <- read csv("C:/Users/ACHANGWA
CHIARA/Desktop/Dissertation_2023/CFR_Region/mockdata1.csv")
# Run summary statistics
stats df <- psych::describe(df$Number of new cases)
print(stats df)
# Set Date column to Date format
df$Date <- as.Date(df$Date)
```

```
30
```

```
#setting the margin
par(mgp = c(3, 0.5, 0))
par(font.lab = 1)
# Plot time series using base R
plot(df$Date, df$Number_of_new_cases,
  type = "l", # line plot
  col = "steelblue", # line color
  lwd = 2, # line width
  main = "Time Series Plot", # title
  xlab = "Date", # x-axis label
  ylab = "Number of cases", # y-axis label
  ylim = c(0, 600000), # y-axis limits
  xaxt = "n", # suppress x-axis for custom formatting
  yaxt = "n", # suppress y-axis for custom formatting
  cex.lab = 1.0) # increase axis label font size
# Customize axes
axis(1, at = pretty(df$Date), labels = format(pretty(df$Date), "%Y-%m-
%d''), las = 1, cex.axis = 0.8)
axis(2, at = seq(0, 600000, by = 100000), las = 1, cex.axis = 0.8)
# Set file path and image size
png("timeseries_plot.png", width = 1200, height = 800, res = 150)
dev.off()
```

Output

Time Series Plot

2021-07-01

2022-01-01

10000-

```
8000-
### subset Jan 2020 to Dec 2021
subset_data <- df[df$Date >= as.Date("2020-01-01") & df$Date <= as.Date("2021-12-31"), ]
stats_subset <- psych::describe(subset_data$Number_of_new_cases)
                                                                                       4000-
print(stats_subset)
#median(subset_data$Number_of_new_cases)
# View the first few rows of the subset
                                                                                        2000-
View(subset data)
# Plot the subset
png("subset_timeseries_plot.png", width = 1200, height = 800, res = 150)
                                                                                                    2020-07-01
                                                                                                                2021-01-01
                                                                                         2020-01-01
par(mgp = c(3, 0.5, 0))
                                                                                                                 Date
par(font.lab = 1)
# Plot time series using base R
plot(subset_data$Date, subset_data$Number_of_new_cases,
                                      # line plot
    type = "1",
    col = "steelblue",
                                   # line color
                                    # line width
    1wd = 2.
                                # title
    main = "Time Series Plot",
    xlab = "Date",
                                    # x-axis label
    ylab = "Number of cases",
                               # y-axis label
    vlim = c(0, 10000),
                               # y-axis limits
# suppress x-axis for custom formatting
    xaxt = "n",
    cex.lab = 1.0) # increase axis label font size
# Customize axes
axis(1, at = pretty(subset_data$Date), labels = format(pretty(subset_data$Date), "%Y-%m-%d"), las = 1, cex.axis = 0.8)
axis(2, at = seq(0, 10000, by = 2000), las = 1, cex.axis = 0.8)
dev.off()
```

Scenario 2: Time series analysis using monthly data

You are a worker at the Ministry of Health in your country. You have been asked to brief the Lee Jong-wook Public Health Fellowship on how the COVID-19 pandemic influenced the Chlamydia infection trends. Using the monthly surveillance data (2017-2022) provided by the Chlamydia surveillance system from KCDA;

- 1) Plot an overall time series of the reported cases
- 2) Briefly describe and interpret your results

Note: Use mockdata2 and R for your analysis.

```
data <- read_csv("lee fellowship/mockdata2.csv")</pre>
 2 View(data)
    data$Month <- match(data$Month, month.abb)
    data$Time <- data$Year + data$Month / 12</pre>
    data$Time <- as.Date(paste(data$Year, data$Month, "01", sep = "-"))
    par(mgp = c(3, 0.5, 0))
    par(font.lab = 1)
11
12 # Plot time series using base R
    plot(data$Time, data$Total,
14
         type = "1",
                                            # line plot
15
         col = "steelblue", # line color
                                          # line width
16
        1wd = 2,
         main = "Time Series Plot",
17
                                      # title
         xlab = "Date".
                                           # x-axis label
18
        ylab = "Monthly Total Chlamydia Cases",
19
                                                       # v-axis label
       ylim = c(0, 1500), # y-axis limits

xaxt = "n", # suppress x-axis for custom formatting

yaxt = "n", # suppress y-axis for custom formatting
20
21
22
23
         cex.lab = 1.0) # increase axis label font size
24
25 # Customize axes
26 axis(1, at = pretty(data$Time), labels = format(pretty(data$Time), "%Y-%m-%d"), las = 1, cex.axis = 0.8)
    axis(2, at = seg(0, 1500, by = 500), las = 1, cex.axis = 0.8)
    png("Chlamydia_timeseries_plot.png", width = 1200, height = 800, res = 150)
    dev.off()
30
```

Output

Time Series Plot

Plotting an interrupted time series in R

Data

1 - Daily number of SARS-CoV-2 cases 2020 – 2022 - mockdata1

2 - Monthly reported cases of Chlamydia 2017 – 2022 - mockdata2

3 - Weekly number of influenza cases - mockdata3

4 - Yearly fertility rate in Korea 1975 – 2022 - mockdata4

R code

-Download the corresponding syntax

Scenario 3: Impact of an Intervention on Influenza Cases

You are an epidemiologist at the National Center for Infectious Disease Control. You have been tasked with assessing whether a new influenza vaccination campaign introduced in January 2020 had an impact on the number of influenza-like illness (IFV) cases reported through the national surveillance system.

- 1) Plot an ITS to assess the impact of the intervention
- 2) Briefly describe and interpret your results

Note: Use mockdata3 and R for your analysis.

The factual model

```
library(tidyverse)
 2 library(nlme)
   library(AICcmodavg)
   ## ITS model
    data <- read_csv("lee fellowship/mockdata3.csv")</pre>
    head(data)
   #Model factual scenario
    model.a = gls(Number_of_IFV_cases ~ Time + Intervention + Post_intervention_time, data = data,method="ML")
11
12
   # Show a summary of the model
    summary(model.a)
13
14
15
   # Add predicted values and standard errors
    data <-data %>% mutate(
      model.a.predictions = predictSE.gls (model.a, data, se.fit=T) fit,
17
      model.a.se = predictSE.gls (model.a, data, se.fit=T)$se
18
19
20 #plot time series
   plot(data$Time, data$Number_of_IFV_cases,
         pch = 16, col = rgb(0, 0, 0, 0.3), # semi-transparent black
22
23
         xlab = "Time", ylab = "Number of IFV Cases",
         main = "ITS Model with 95% CI")
24
25
   # Add the confidence ribbon using polygon
    polygon(c(data$Time, rev(data$Time)),
28
            c(data$model.a.predictions - 1.96 * data$model.a.se,
29
              rev(data$model.a.predictions + 1.96 * data$model.a.se)),
            col = "lightgreen", border = NA)
30
31
   # Add the model prediction line
   lines(data$Time, data$model.a.predictions, col = "black", lty = 1)
```

Output

ITS Model with 95% CI

The counterfactual model

```
35 ##### Counterfactual model
model.b = gls(Number_of_IFV_cases ~ Time + Intervention + Post_intervention_time, data = data,method="ML", correlation= corARMA(p=2,q=2, form = ~ Time))
   model.b
    data<- data %>%
39
      mutate(
        model.b.predictions = predictSE.gls (model.b, data, se.fit=T)$fit,
40
41
        model.b.se = predictSE.gls (model.b, data, se.fit=T) $se
42
43 df2<-filter(data,Time<51)
44 model.c = gls(Number_of_IFV_cases ~ Time, data = df2, correlation= corARMA(p=1, q=1, form = ~ Time),method="ML")
45 coefficients (model.c)
46 data<-data %>% mutate(
      model.c.predictions = predictSE.gls (model.c, newdata = data, se.fit=T) $fit,
      model.c.se = predictSE.gls (model.c, data, se.fit=T)$se
49 )
50
51 # Set up the plot with observed data points
52 plot(data$Time, data$Number_of_IFV_cases,
         pch = 16, col = rgb(0, 0, 0, 0.3), # semi-transparent black points
53
         xlab = "Time", ylab = "Quantity",
54
         main = "ITS Model Comparison with 95% CI",
55
56
         ylim = range(c(data$Number_of_IFV_cases,
57
                        data$model.b.predictions + 1.96 * data$model.b.se,
58
                        data$model.b.predictions - 1.96 * data$model.b.se,
59
                        data$model.c.predictions + 1.96 * data$model.c.se,
                        data$model.c.predictions - 1.96 * data$model.c.se)))
60
61
62 # Add the green ribbon for model B
    polygon(c(data$Time, rev(data$Time)),
            c(data$model.b.predictions - 1.96 * data$model.b.se,
64
65
              rev(data$model.b.predictions + 1.96 * data$model.b.se)),
            col = "lightgreen", border = NA)
66
67
68 # Add the pink ribbon for model C
    polygon(c(data$Time, rev(data$Time)),
            c(data$model.c.predictions - 1.96 * data$model.c.se,
70
71
              rev(data$model.c.predictions + 1.96 * data$model.c.se)),
72
            col = "pink", border = NA)
73
```

Output

ITS Model Comparison with 95% CI

Scenario 4

The total fertility rate (TFR) in South Korea has shown a continuous decline from 1975 to 2022. Between 1975 and 1992, the government actively promoted a family planning policy, which was discontinued in 1993. Later, in 2004, a birth encouragement policy was introduced to address declining fertility.

Using the provided mockdata4, create an Interrupted Time Series (ITS) plot in R to identify changes in the level and trend of TFR associated with these two policy interventions.

Achangwa et al., JMIR Public Health and Surveillance, 2025.

Key takeaways

✓ Public health surveillance is action-oriented

- Involves systematic collection, **analysis**, **interpretation**, and dissemination of health data to guide prevention, control, and policy decisions/actions.

✓ Core descriptive analysis is important for surveillance

- Examining data by time (trends, seasonality), place (maps, clusters), and person (age, sex, attack rates) provides the foundation for effective interventions and preparedness.

✓Time series analysis underpins surveillance

-It helps understand disease behavior, forecast future trends, evaluate the impact of interventions, and compare pre- and post-policy periods

The Team

*** Thank you!!