Infectious disease modelling
Quantifying the superspreading potential
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After this course,

* In community epidemics, superspreading can be
quantified and described.



Epidemiological parameters

m Hospital based surveillance
SARI or laboratory reporting

m Syndromic surveillance
Sentinel testing

@ Symptomatic cases Web searches

Case or individual based
- Incubation Period
- Latent period

Transmission pair based

- Generation time
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- Superspreading potential

Transmissibility
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- ySuperspreading potential
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Epidemiological parameters
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Epidemiological parameters

Fig. 1: Epidemiological parameters of SARS-CoV-2 transmission.
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Epidemiological parameters

Individual variability of infectiousness

* Virulence * Physiological factors

e Co-infection  Behavioural factors

with another pathogen * Immunological factors

* Crowding

* |nter-hospital transfer

Stein RA, et al. 2015 Int J In?‘ect Dis.
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Measures for transmissibility

* Infection attack rate
- The proportion of a population (subgroup) infected over the course of an epidemic

number of new cases in the population at risk

attack rate = — ,
number of persons at risk in the population

* Secondary (infection) attack rate
- The proportion of individuals infected in a semi-closed setting (e.g., households) in
an outbreak caused by an index case (ideally accounting for pre-existing immunity)



Measures for transmissibility

* Basic reproductive number (R))
- The average number of secondary cases generated by an index case
when an epidemic begins in a completely susceptible population

* Effective reproduction number (R,)

* Parameter for superspreading potential ?



Measures for transmissibility

* Basic reproductive number (R))
- The average number of secondary cases generated by an index case
when an epidemic begins in a completely susceptible population

* Effective reproduction number (R,)

* Overdispersion parameter (K)
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Basic reproduction number

Basic reproductive number
- The average number of secondary cases generated by an index case when

an epidemic begins in a completely susceptible population.

12



Basic reproduction number

R, > 1

Ex) Rp =2




Basic reproduction number

 R,<1 — the disease will eventually disappear
 R,=1 — the disease will become endemic

 R,>1 — there will be endemic



Basic reproduction number

Ro

Info. of parameters, susceptible populations, etc

Info. of offspring distribution

Compartment model with
differential equations
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Basic reproduction number

Poisson distribution

Article Talk

From Wikipedia, the free encyclopedia

discrete probability distribution that expresses the probability of a given number
of events occurring in a fixed interval of time if these events occur with a known

constant mean rate and independently of the time since the last event.l'! It can

3 s

Siméon Denis Poisson
(1781-1840)
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Probability distribution

Probability distribution

Continuous
probability distribution
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Probability distribution

Normal distribution
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« Continuous probability distribution

» General form of its probability

density function(PDF):
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Probability distribution

Percent

30

10

* Maximum likelihood estimation (MLE)

« Estimate the most appropriate
parameters among the assumed
probability distribution forms.

RS
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Normal, y=35, 0=5.5
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Normal, y=32.6, 0=4.2

Normal, y=30.1, 0=3.8



Probability distribution

Y~ Poisson(A)

Y : Expected value of a specific event occurring (i. e., Infected Cases)

A : Mean no. of times a specific event occurs within a time unit (i.e., Ry)

» No.secondary infected cases from a primary case~ Poisson(R,)

https://en.wikipedia.org/wiki/Poisson_distribution



Probability distribution
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Probability distribution

Probability of k occurrences

k; )~Pois(A
f(k; A) ( ) * Probability density function (PDF):
0.40 — - - ' ' l N
0.35 | °r=1 1t f(k;A) =Pr(X=k) = Kl
® \—=4 :
0.30 F O AN=10 ]

where
= 0.25 F .

I i

= 0.20

o015 F
0.10 F
0.05 F

M0 5 10 15 20 ¢ E(X)=A

k . _
No. of occurrences Var (X) = A

e ki is the number of occurrences (k =10,1,2,...)
e¢ is Euler's number (e = 2.71828...)

e ! is the factorial function.




Probability distribution

Probability of k occurrences
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Y~ Poisson(4)

. Generation 0

Generation 1 ~ Poisson(R)

yeneration 1

eneration 2 ~ Poisson(R,)

N N 2 2 A T

Generation 3 ~ Poisson(R,)




Probability distribution

'I\/Iore accurate model than the Poisson distribution by allowing the mean
and variance to be different is needed.
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https://en.wikipedia.org/wiki/Poisson_distribution

Probability distribution

S

Siméon Denis Poisson (1781-1840) Blaise Pascal (1623-1662)
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Probability distribution

For occurrences of associated discrete events

Enhanced Fujita Scale (EF Scale)

EF SCALE
EF Rating 3 Second Gust (mph)

M 0 65-85
—era 1 86-110
—e3 P 2 111-135

EF2 3 136-165

EF1 4 166-200
L 5 Over 200

oA/ =
e Httpe/ /e WIKIpeaIa OTh AWIRl N epative DiffoMial_distribution 27
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Superspreading potential

i= Superspreading event

Article Talk

From Wikipedia, the free encyclopedia

A superspreading event (SSEV) is an event in which an infectious disease iIs spread much more than

usual, while an unusually contagious organism infected with a disease is known as a superspreader.

In the context of a human-borne iliness, a superspreader is an individual who is more likely to infect
others, compared with a typical infected person. Such superspreaders are of particular concern in

epidemiology.

https://en.wikipedia.org/wiki/Superspreading %évent



Superspreading potential

Negative binomial distribution

- Distribution reflecting variation in individual infectiousness
in the Poisson distribution

Parameters

- Mean (R))

- Variance (kappa) . Variation in individual infectiousness
Smaller K, - Greater the variation (i.e., Highly likelihood SSE)



Superspreading potential

Probability

Y~NB(r,p)

0.15

« Probability density function

NBGrp) = (T ) - pyepr

— n=20 p=0.25
. n=20 p=0.5
n=20 p=0.75

o
..

* r No. successes by the trial is stopped
* v Probability of success in each trial

 k No. of failures

0.05 < ‘J‘“
o)

0

50 100

Random Variable

Negative binomial distribution

. E(X)= r(1-p)
p
e \Var (X)= r(;p)
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Superspreading potential

Y~ Poisson(4)

» No.secondary infected cases from a primary case~ Poisson(R,)

Z~ Poisson(R,)

Offspring distribution with mean R,: Not applicable when the variance is
greater or less than the mean
(Failed to show heterogeneity)

» Alternative : Negative binomial distribution (Poisson—Gamma mixture)



Superspreading potential

7~ Poisson @ Negative binomial distribution
(Poisson—-Gamma mixture)
L Frtk+z); k \/ Ry \*
Assuming Gamma(l‘)dlzs;trlbutlon » P(Z =z) = AT (0 (k +R0) (k +R0)
Ro ~T (o, —)
1-p

« : shape parameter Z~NB (RO» k)
p/1-p : scale parameter
p : probability

Gamma distribution is used in statistics to model a wide range of processes



Superspreading potential

Gamma-Poisson mixture

f fPoisson(2) (z) x fGamma(cx ) (A)dA
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Superspreading potential

Gamma-Poisson Mixture

f(z;a,p) = (1-p)* p®

*

I'a+z)
z\I'(a)

E(Z)=u
2 2

Kk Ro

_ _ _ H-
a_k’p_kwEH%I(“_RO) Var(Z)=u,+?—RO+
k

k Z
P(Z=2)= Ik +2) ( k ) ( Ro ) Lower the k , larger the variance
z!I'(k) \k +Ro/ \k+ Ry = Increase of heterogeneity

Z~NB(Ry, k)

k : shape parameter and dispersion parameter
R,: basic reproduction number

https://en.wikipedia.org/wiki/Negative_binomial_distribution



Superspreading potential

Superspreading potential

Based on data type

Offspring distribution fitted with

@

negative binomial distribution
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Superspreading potential

Superspreading potential

Info. of infector-infectee pair

Info. of final size of cluster

Offspring distribution fitted with
negative binomial distribution

Infector

No.
offspring

Likelihood model based on the
final size of all clusters

No. of secondary cases (i.e., infectee) from each infectors
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Superspreading potential

Superspreading potential

Offspring distribution fitted with Likelihood model based on the
negative binomial distribution final size of all clusters

Number of MERS clusters of a given size
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Superspreading events

Superspreading potential

Offspring distribution fitted with Likelihood model based on the
negative binomial distribution final size of all clusters
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R package for Fitting Distributions



Practice

fitdistr

Maximum-likelihood Fitting of Univariate Distributions

Description

Maximum-likelihood fitting of univariate distributions, allowing parameters to be held fixed if de-

sired.
Usage
fitdistr(x, densfun, start, ...)
Arguments
X A numeric vector of length at least one containing only finite values.
densfun Either a character string or a function returning a density evaluated at its first
argument.
Distributions "beta”, "cauchy”, "chi-squared”, "exponential”, "gamma”,
"geometric”, "log-normal”, "lognormal”, "logistic”, "negative binomial”,
"normal”, "Poisson”, "t" and "weibull" are recognised, case being ignored.
start A named list giving the parameters to be optimized with initial values. This

can be omitted for some of the named distributions and must be for others (see
Details).

Additional parameters, either for densfun or for optim. In particular, it can be
used to specify bounds via lower or upper or both. If arguments of densfun
(or the density function corresponding to a character-string specification) are
included they will be held fixed.

library(MASS)

"fitdistr" function estimates
the parameters ‘1’ and ‘size’
of the log normal distribution



Practice

@ Add data

@ Plot histogram
- for distribution assumption

3 Negative binomial distribution fitting by MLE fitting
- Estimates the Ryand k

@ Plot PDF

® 95% confidence interval for R, and k



Practice

@ Add data

1 # offspring distribution

2 offspring <- c(rep(0,199),rep(1,57),rep(2,18),rep(3,6),rep(4,5),5,rep(6,2),10,11)
3 offspring

4 # frequency table
5

table(offspring) § -2

@ Plot histogram s

- for distribution assumption S °7

7 # plot histogram . 1] B

8 hist(offspring) v

9 hist(offspring, right = F) o -
M2k L= right =T: ~O| & ! I ! I | '
Right =F: ~O| 2k 0 2 4 6 8 10

offspring



Practice

(3) Negative binomial distribution fitting by MLE
- Estimates the Ry, and k

11 # fitting negative binomial distribution
12 library(MASS)
13 fit <- fitdistr(offspring, "negative binomial")
14 fit
Fitting NB distribution by MLE
> fit
k size R, mu
©.42580272 ©.58275962
(0.08797182) (©.06899073)



Practice

@ Plot PDF

16 # plot PDF
17 hist(offspring, prob=T, col="gray",right

F)

Density

03 04 05 06 0.7

02

0.1

00

offspring



Practice

@ Plot PDF

16
17
18
19
20
21
22

# plot PDF
hist(offspring, prob=T, col="gray",right = F)
xvalue <- @:max(offspring)

yvalue <- dnbinom(xvalue,
size = fit$estimate["size"], 3
mu = fitfestimate["mu"]) A
lines(xvalue,yvalue)

0.7

06

05

04

03

02

0.1

0.0

offspring



Practice

® 95% confidence interval of Ry, and k

33 # Estimate 95th percentile of size and mu
34 conf _interval <- confint(fit, level = 0.95)
35 print(conf_interval)

> # Estimate 95th percentile of size and mu
> conf_interval <- confint(fit_nb, level = 0.95)
> print(conf_interval)
2.5 % 97.5 %
size 0.2533811 0.5982243
mu 0.4475402 0.7179791
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